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New Econometric Evidence on Agricultural Total Factor 
 Productivity Determinants: Impact of Funding Sources 

 
In 1980, 17% of the funding for the SAES system was from so-called “regular Cooperative State 

Research Service (CSRS) administered sources,” and 15.1% were from Hatch Act and other 

formula funds. These are funds where the Congressionally-appropriated total amount of funds is 

distributed among the various states by a fixed formula.1 No significant CSRS-administered 

competitive-grant program or funding existed at that time. Also, we refer to “other federal funds” 

as those that are not from CSRS or the Cooperative State Research, Education and Extension 

Service (CSREES). They include SAES funding obtained from the National Science Foundation 

and National Institutes of Health competitive grants and USDA cooperative agreements. In 1980, 

these funds accounted for 11.4% of SAES funding, state governments accounted for 55.5%, and 

private sources accounted for another 9.2 percentage points.  Hence, in 1980, programmatic 

funding was roughly 70.6% of total SAES system funding (table 1). 

 Since 1980, the share of SAES system funds obtained from Hatch and other formula funds 

has steadily declined to 10.2% in 1990, 8.4% in 2000, and 7.9% in 2003. CSRS/CSREES 

administered competitive grant funds rose to 1.9% of the total SAES funding in 1990 and then to 

2.3% in 2003.  Other federal government agency funding has steadily risen in importance, from 

12.1% of the total in 1990 to 20.9% in 2003. State government funding account for 55% of the 

total in 1990, but declined since then—50.1% in 2000 and 43.7% in 2003. Private sector funds 

increased in importance to the SAES system since 1980, being 13.2% in 1990 and 15.1% in 2003. 

Hence, since 1980, the share of SAES system funding that arises from programmatic funding 

declined to 50.7% in 2003, which is roughly 20 percentage points lower than in 1980.   

 Much debate has surrounded external peer-reviewed competitive grant funding of public 

agricultural research and federal formula funding. Key issues in favor of formula funding and 
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against competitive grants are as follows. First, programmatic funds, e.g., Hatch formula funds, 

involve no overhead and, hence, about 97 percent of the total federally appropriated formula 

agricultural research funds go to SAESs. In contrast, grant and contract funded SAES research 

involve significant indirect cost or overhead being paid to the Office of the Provost or Vice 

President for Research at the university receiving the grant. Only a small share of the overhead 

funds is channeled back to the SAES or principal investigator. Hence, university overhead is a tax 

on public agricultural research funds—driving a wedge between the amount appropriated by 

Congress and the amount received by the SAES scientists.   

 Second, competitive grant funding tends to favor institutions that have the research 

infrastructure to undertake research that is typically national in scope and will have appeal to 

reviewers from many different regions. In the Land Grant University world, the favored 

universities tend to be those that have the largest research infrastructure and, in particular, those 

that have expert resources for writing grant proposals, such as the University of California, Big 

Ten Schools that are Land Grant Universities (e.g.,Wisconsin, Michigan, Purdue), and a few other 

Land Grant Universities. Proposals that address problems of concern to a single state or small 

group of states are under-funded in the national competitive-grant process, despite the fact that 

such research problems are of critical concern to states or regions and may have a large social 

payoff relative to cost. This is especially important to small states─New Hampshire, Vermont, and 

West Virginia—that have depended heavily upon Hatch funds, obtaining more than 45% of their 

funds from this source. 

 Third, national competitive grant programs also tend to reallocate research resources 

within Land Grant Universities away from research that researchers see as vitally important to 

their individual states and toward research that review panels and reviewers think will have 

national appeal in the competitive-grant process. In the competitive-grant process the federal 
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government tends, on average, to under-fund the proposals that they do fund, including those 

asking for preliminary results. This has the practical effect of leveraging national agricultural 

research priorities, because other funds, for example, state-government appropriations, pay for the 

research that produces preliminary results and completes these projects. At a minimum, a 

significant amount of state government-provided agricultural research funds are used in writing 

(and evaluating) research grant proposals for national competitive-grant programs, whereas those 

same resources could be used to study important state problems (Huffman and Just 1999). The 

time spent writing proposals in an effort to obtain federal competitive grants represents an effort 

that could be productively used to research local agricultural problems.  

The counter-argument goes something as follows. Under the Hatch Act, federal formula 

funds can be allocated to research on a wide range of problems in agriculture, marketing, forestry, 

home economics, and rural and community development, and in this sense, some might suggest 

that they have limited federal accountability.2  Some have argued that research conducted under 

these funds is not subject to rigorous research methods.  Agricultural Experiment Station research 

projects are reviewed infrequently, but the scientists working on these projects are university 

tenure-track and tenured faculty, who undergo regular performance assessment for university pay 

increases and, some, for promotion in rank. Thus, the expectations set by the university are critical  

factors affecting scientists’ rigor and diligence in research and other activities. Huffman and Just 

(2000) have argued that a diversity of incentives among scientists helps the research system reduce 

its risks in discovery, because nobody knows when and where the next important discovery will 

occur. One could suggest that scientists at small Land Grant Universities that generally operate 

under weaker incentives for discovery than those in the large universities are providing important 

diversity in the discovery process in the U.S. This does not mean that scientists at small 

universities will never make big discoveries, only that the expected frequency will be low. Hence, 
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it is difficult to argue that “bad science” is an accurate description of agricultural research in the 

SAES system. 

 If fewer dollars were spread throughout the Land Grant system for formula funding, 

particularly to fund the many small (and inconsequential, from the big universities’ perspective) 

Land Grant Universities, those dollars could instead be used to increase the research funds 

available for competitive grant programs. This rationale ties in with the argument that from a 

scientific discovery perspective, the U.S. might not “need” more than 20 Colleges of Agriculture, 

and perhaps we could get by with even fewer. However, reducing the number of states receiving 

federal agricultural research funds to 20 or so would greatly change the political economy of 

funding agricultural research in the U.S. Congress. A likely prospect is that, over time, the amount 

of Congressionally appropriated funds for public agricultural research would decline. Another 

possibility is that the 28 or so Land Grant Universities that would be cut out of formula funds 

might pursue Congressionally ear-marked research funds (National Research Council, p. 71-72). 

Hence, it is not clear that an attempt to concentrate public agricultural research funds in a few 

large Land Grant Universities would actually be successful over the long run.  

 Prior studies that have examined the impacts of public agricultural research and extension 

on state or regional agricultural productivity include Griliches (1963); Huffman and Evenson 

(1993); Alston, Craig and Pardey; and Yee, Huffman, Ahearn, and Newsome (2002). Huffman 

and Just (1994), however, were the first to test econometrically the hypothesis that the 

composition of public agricultural research funding affects the productivity of research.  They 

examined the Huffman and Evenson TFP data for 1948-1982 and tested the hypothesis that grants, 

contracts and cooperative agreement funded agricultural research; federal formula; and state 

funded research are equally productive. They rejected this hypothesis and concluded that federal 

formula funding is more productive than competitive-grant funding, possibly owing to the high 
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transaction costs associated with external competitive grant programs. Much has happened in the 

technology of agriculture and the funding of agricultural research since 1982.  In particular, the 

USDA’s competitive grant program has grown from a few million dollars to about a $100+ 

million dollar program and the SAES system has experienced a large increase in federal grant 

funds from non-USDA agencies.   

 The objective of the current paper is to present a new econometric examination of the 

impacts of public agricultural research and extension, and of the composition of public agricultural 

research funding on the productivity of agricultural research in the 48 contiguous states for the 

more recent time-period 1970-1999.  In particular, it reports on tests of the hypothesis that the 

composition of public agricultural research funding, i.e., shares from federal competitive grants 

and federal formula funds, has no effect on state agricultural productivity. The alternative 

hypothesis is that composition does affect the productivity of public agricultural research. To 

accomplish these objectives, we use an econometric model of agricultural productivity, new 

annual state productivity data constructed by the USDA (see Ball, Butault and Nehring), new 

public agricultural research data by Huffman et al., new private R&D data associated with 

patenting by Johnson and Brown, and new extension data by Ahearn, Lee and Bottom. We show 

that the composition of SAES funding affects the size of the impacts of public agricultural 

research on state agricultural total factor productivity (TFP).  We also show that a reallocation of 

federal formula funding to competitive-grant funding will lower state agricultural productivity 

and, in this sense, be a non-optimal agricultural science policy.   

More about Agricultural Research Funding and Productivity 

Over the past 25 years, the rate of growth of funding for the State Agricultural Experiment Station 

(SAES) system has slowed dramatically, and its composition has changed—with rapidly growing 

funds from non-traditional sources. The constant dollar funding for the SAES system grew at an 
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average annual rate of 1.4% during the decade of the 1980s. However, over the next 13 years, the 

average annual rate of growth was only 0.39% (table 1). 

  Looking across the 48 states, we see differences in the composition of SAES funding (table 2). 

In New England and the Appalachian states, a large share—20 to 55 percent—of  SAES funding is 

from federal formula funding. In contrast, the Pacific region has an unusually small share of SAES 

funding from federal formula programs (table 2). California and Florida are states that stand out 

for their unusually low share of SAES funds from federal formula moneys─about 5 percent. 

Turning to federal grants, contracts and cooperative agreement funding, the New England, 

Northeast, Northern Plains, Appalachian, Southeast, Delta States, and Southern Plains regions 

obtain a small share of SAES funds through these federal programs. States that stand out because 

of their large share—over 17 percent—of funding from these federal competitive sources are 

Wisconsin, Oregon, Indiana, Colorado, Rhode Island, California, Michigan, New York and Utah. 

These states established relatively early the institutional infrastructure and scientific skills that 

would make them competitive in programs where the research agenda is set in Washington, D.C. 

and not locally.  

  Turning to a description of agricultural sector total factor productivity records at the state level 

from 1970-1999, total factor productivity grew at an average annual rate of 2 percent or more in 

Connecticut, Michigan, North Dakota, South Dakota, North Carolina, Georgia, Florida, Arkansas, 

Washington and Oregon (table 2). All of these states, except Connecticut and Michigan, had 

agricultural output growth rates of two percent per year or more. States with very low average TFP 

growth were Vermont and Wyoming (0.89), Delaware (1.08), and Nevada (1.09). Over this period, 

it has been common for input growth to be negative.  Nevertheless, among the four states with 

slowest TFP growth, three had positive input growth.   
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  States in close proximity have, for the most part, agro- and geo-climatic conditions and 

economic factors that may make them respond similarly to new technologies. Hence, looking at 

regional groups of states may show another dimension of agricultural sector TFP growth. Consider 

the 48 contiguous states grouped into the 11 USDA regions. Total factor productivity growth was 

relatively high in the Lake States, Southeast, Northern Plains, and Pacific region, but low in the 

Mountain region (table 2).3  

  A hypothesis is that public agricultural research capital is one important determinant of total 

factor productivity in agriculture. Table 2 shows that the annual average growth in public 

agricultural research capital over 1970 to 1999 was high, at over 3% percent in Michigan, Iowa, 

Missouri, North Dakota, Nebraska, Kansas, Virginia, North Carolina, Georgia, Florida, Arkansas, 

Idaho, Colorado, Arizona, and California.  However, it was less than 1.5 percent per year in the six 

New England States, New Jersey, Ohio, and Wyoming. Furthermore, the simple correlation 

between state annual average TFP growth over 1970-1999 and annual average growth of public 

agricultural research capital is 0.25.  

 An Econometric Model of Total Factor Productivity for Agriculture 

 Assume a state aggregate production function with disembodied technical change where Q is an 

aggregate of all types of farm outputs from farms within a state aggregated into one output index, 

A(RPUB, RPRI, EXT) is the associated technology parameter, and F(·) is a well-behaved 

production function (Chambers, p. 181).   K is state aggregate quality-adjusted physical capital 

input, L is state aggregate quality-adjusted labor input, and M is state aggregate quality-adjusted 

materials input.  The technology parameter A(·) is hypothesized to be a function of state public 

agricultural research capital (RPUB), private agricultural research capital (RPRI), and public 

agricultural extension capital (EXT).  The state aggregate production function is then: 

(1) Q = A(RPUB, RPRI, EXT) F(L, K, M). 
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Now we define TFP as: 

(2) TFP = Q/F(L, K, M) = A(RPUB, RPRI, EXT). 

Taking natural logarithms of both sides of equation (2) and adding a random disturbance term µ, 

we obtain the rudimentary econometric model of agricultural productivity 

(3) ln TFP  = ln A(RPUB, RPRI, EXT) + u. 

 For this study, one goal is to test the impact of public agricultural research capital and its 

composition, e.g., shares due to major funding sources, on state aggregate total factor productivity 

(also, see Huffman and Just 1994). To accomplish this, the funding shares are interacted with the 

public agricultural research capital variable, and we add a time trend (trend) to effectively de-trend 

the dependent variable and all regressors (Wooldridge 2003, p. 350-351). Hence, the embellished 

version of the econometric model of state agricultural TFP is 

(4) ln TFPilt  = β1 + β2 ln RPUBilt + β3 [ln RPUBilt]SFFilt + β4 [ln RPUBilt](SFFilt)2 

+ β5 [ln RPUBilt]GRilt + β6 [ln RPUBilt](GRilt)2 + β7 ln RPUBSPILLilt  + β8 ln EXTilt 

+ β9  ln RPRIilt + β10 trend +  δl +  uilt, 

where i refers to a particular state in region l and year t. In addition,  SFFilt is a given state’s share 

of SAES funding from federal formula and state government appropriations (i.e., programmatic 

funding) in year t; GRilt is a given state’s share of SAES funding from federal grants, contracts and 

cooperative agreements (i.e., federal grants and contracts) in year t; and RPUBSPILLilt is a given 

state’s public agricultural research capital spillin in year t,4 and δl is a regional fixed effect. Given 

the specification of equation (4), including an intercept term, the unconditional expected value of 

the random disturbance term uilt is zero. 

   Taking equation (4) and ignoring subscripts, the elasticity of state agricultural total factor 

productivity with respect to RPUB, RPUBSPILL and EXT is 
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(5) ∂ln(TFP)/∂ln(RPUB) = β2 + β3 SFF + β4 (SFF)2 + β5 GR + β6 (GR)2, 

(6) ∂ln(TFP)/∂ln(RPUBSPILL) = β7, and 

(7) ∂ln(TFP)/∂ln(EXT) = β8 . 

The elasticity of state agricultural productivity (TFP) with respect to a change in a state’s own 

public agricultural research capital, given by equation (5), clearly takes different values as the 

composition of SAES funding changes, i.e., SFF or GR.  The elasticity of a state’s agricultural 

TFP with respect to the public agricultural-research-capital spillin is given by equation (6) and 

with respect to public agricultural-extension capital is given by equation (7).5    

  The unique feature of equation (4) is that the productivity of a state’s public agricultural- 

research capital depends on and is proportional to the composition of SAES funding sources—

SFF and GR  

       (8) ∂ln(TFP)/∂(SFF) = (β3 + 2β4 SFF) ln RPUB, 

       (9) ∂ln(TFP)/∂(GR) = (β5 + 2β6 GR) ln RPUB. 

Equations (8) and (9) show how the composition of public agricultural research funding affects 

state agricultural TFP.  The proportional change of state agricultural TFP due to a one percentage-

point change in SFF—a state’s share of SAES funding from federal and state programmatic 

funding—is given in equation (8).  Likewise, the proportional change of state agricultural TFP due 

to a 1 percentage point change in GR⎯a state’s share of SAES funding from federal grants and 

contracts⎯is given by equation (9). The inclusion of squared terms in these equations [(SFF)2, 

(GR)2] permits us to examine potential nonlinear impacts of funding composition on the 

productivity of public agricultural research at the state level.  

  The elasticity of state agricultural TFP with respect to private agricultural research capital 

(RPRI) is given by equation (10):6  
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  (10)  ∂ln(TFP)/∂ln(RPRI) = β9. 

 With public funds allocated to agricultural research having non-research alternatives, it is 

interesting to ask what the social rate of return is on these investments. For example, if one million 

dollars of additional public funds was invested today in an average state, it would have direct 

benefits distributed over the next 35 years in this state and spillover benefits in other states in the 

same geo-climatic region. By setting the net present value of the benefits equal to the cost, we can 

solve for the marginal annualized internal rate of return (MIRR). When benefits and costs are in 

constant prices, we obtain a real rate of return on the public investment. The computation is: 

(11) 1 = [
)

)ln(
RPUB
TFP

ln(∂
∂ Q/R + (n – 1)  

)ln(
)ln(

RPUBSPILL
TFP

∂
∂  Q/S] , ])1/(1[

m

0

i
i rw +∑

where Q is the sample mean value at the state level for gross agricultural output, R is the sample 

mean of a state’s own public agricultural research capital, and (n -1) is the number of states into 

which agricultural research-spillin effects flow.  S is the sample mean of the public agricultural 

research capital spillin, m is the number of periods over which the input of public agricultural 

research impact agricultural productivity, wi’s are timing weights used to derive the public 

agricultural research capital variable, and r is the real MIRR including impacts of R&D capital 

spillovers (see Yee, Ahearn and Huffman, p. 191). 

The Data  

The data set is a panel for the 48 contiguous states and 30 years, 1970 through 1999, giving 1,440 

total observations. We use the new annual state total factor productivity (TFP) data obtained from 

the USDA (see Ball, Butault, and Nehring).  The data on public agricultural research expenditures 

with a productivity focus were prepared by Huffman et al., and they are converted to constant 

dollar values using the Huffman and Evenson (2005, p. 106-107) research price index. Because 
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the real agricultural research expenditures with a productivity orientation are in constant dollars, 

they do not have a strong trend over the sample period.   

The science of constructing research capital variables from research expenditures remains 

in its infancy (Griliches 1979, 1998). However, Griliches established a tradition 40 years ago of 

using real public agricultural research expenditures to proxy the “true” measure of agricultural 

research discoveries that impact productivity. With this proxy (instrumental variable) approach, 

the important issue is not that we do not have a perfect measure of public agricultural research 

capital, but that we have a measure that is correlated with the true measure and with ln TFP 

(Greene, p. 86-88).7  Under this condition, the estimated coefficient of the agricultural research 

capital variable in equation (4) will be consistent (and no errors in variable problems exist).   

Although a few researchers have included free-form or many lags of public agricultural 

research expenditures without much structure in aggregate productivity analyses, e.g., Alston, 

Craig, and Pardey, this generally asks too much of the data, in the sense that too many coefficients 

must be estimated.8  Hence, by imposing prior beliefs about the shape of timing weights, we 

reduce the demands on the data to identify parameters, and we get rid of parameter-estimate 

oscillation.  For example, Griliches (1998) concludes that the impact of R&D on productivity or 

output most likely has a short gestation period, then blossoms, and eventually becomes obsolete. 

Following his guidance, we approximated this pattern with the follow pattern of timing weights. 

First, a gestation period of two years is imposed, during which the impacts of public agricultural 

research capital on productivity are negligible. Second, impacts are then assumed to be positive 

over the next seven years and are represented by increasing weights, followed by six years of 

maturity during which weights are high and constant. Then, twenty years of declining weights 

follow that go to zero eventually.  This weighting pattern is known as “trapezoid-shaped time 

weights” (see figure 1, and Evenson, p. 584-588).9  
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We, however, can reduce the size of the standard error associated with our research capital 

variables by choosing, among alternative instruments, one that is most highly correlated with true 

public agricultural research capital. One measure of research that has been used by some 

researchers is the total agricultural research expenditures across all agencies, research 

commodities and research problem areas (U.S. Dept. Ag. 1993). However, if we delete research 

expenditures that are, at best, remotely related to agricultural productivity, we can create a 

research capital variable that is more highly correlated with the true public agricultural research 

capital variable. We do this by choosing the subset of all public agricultural research expenditures 

undertaken by the Agricultural Research Service (ARS) and Economic Research Service (ERS) of 

the USDA and SAES and Veterinary Medicine Schools/Colleges of the Land Grant system that 

have an agricultural productivity focus. We selected all research commodities that are farm output, 

farm input or farm pest and research problem areas (RPAs) that are focused on biological 

efficiency, mechanization, protection/maintenance and management. In particular, we excluded 

research on post-harvest activities and on research commodities denoted as households, families or 

communities. This remaining subset of real public agricultural research expenditures is then used 

to construct the public agricultural research capital variable (RPUB).10  

Interaction terms between a state’s public agricultural research capital and SAES funding 

shares are created, i.e., the share of the SAES funds from federal formula and state government 

appropriations (SFF) and federal grants and contracts (GR) are multiplied by ln RPUB. However, 

given that the public agricultural research capital is derived using 35 years of data, we lagged SFF 

and GR by12 years, to place them roughly at the weighted mid-point of the total lag length.  

Although research spillin areas might be defined using state units, e.g., McCunn and 

Huffman, we choose to use geo-climatic regions as defined in Huffman and Evenson (1993, p. 

195). The regions are units that have similar climates and soils, leading to similar technological 
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opportunities. For example, consider Iowa. It is covered by geo-climatic region 6, and it is 

surrounded by 6 states. For each of these states, we weight the amount of public agricultural 

research capital in each year by the share of the state that is also in region 6, and then we sum over 

these 6 weighted values.11 Thus, the public agricultural research capital spillin for a given state 

does not include its own public agricultural research capital.  

The public agricultural extension capital variable is constructed as follows. We take data 

on full-time equivalent professional extension staff years allocated to agricultural and natural 

resource extension to construct our public extension variable (Ahearn, Lee and Bottom). The 

instrument for public extension is a five-year weighted average of extension staff years, where the 

current year’s input receives a weight of one-half and the weights decline geometrically over the 

next four years.    

To represent state private agricultural R&D capital, we also apply the instrumental variable 

method. We take data on the annual flow of all private agricultural patents awarded in the U.S. to 

domestic and foreign inventors in four areas: field crops and crop services; fruits and vegetables; 

horticultural and green house crops; and livestock and livestock services (Johnson and Brown). 

For each state, we apply local production weights to each of the four totals.  Then the public 

agricultural research capital variable is created by applying trapezoidal timing weights over a 19-

year period and summing.  

To take some account of the fact that federal and state agricultural science and economic 

policies follow natural boundaries around states and regional groupings of states, we define seven 

regional dummy variables. Starting from the eleven ERS production regions (table 2), we reduce 

them to seven by combining the New England and Northeast regions into a new Northeast region, 

the Appalachian region and the Southeast into a new Southeast region, the Lake States and Corn 

Belt into a new Central region, and the Southern Plains and Delta regions into a new South Plains 
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region. Other regions are the Northern Plains, Mountains, and Pacific.  See table 3 for definitions 

of symbols and summary definitions of variables.  

Method of Estimation 

Equation (4) is to be fitted to panel data for 48 states. At one time, it was somewhat common to 

undertake some type of feasible-generalized-least-squares estimation (FGLS) using quasi-first 

differences when fitting models over time (e.g., see McGuirk, Driscoll, and Alwang). For our 

particular estimation problem, recommended practices currently are different. It is acceptable to 

estimate the model by OLS, but to correct the standard errors for heteroscedasticity and/or 

autocorrelation. 

One adjustment suggested by Greene (p. 217-219) is to incorporate prior information on 

plausible forms of heteroscedasticity and/or autocorrelation. For example, it is most likely that the 

random disturbance in equation (4), uilt, is heteroskedastic across states and follows a first-order 

autoregressive process over time.12  Another adjustment is proposed by White (1980) and 

MacKinnon and White (1985) where standard errors are adjusted for a general form of 

heteroscedasticity. The latter methodology was extended by Newey and West to a general form of 

autocorrelation or combined general heteroscedasticity and autocorrelation. Also see Davidson 

and MacKinnon (p. 548-556); Woodridge (2002, p. 148-152); and Cameron and Trevide. After 

weighing these options, we decided to pursue the simplest but most plausible correction to the 

standard errors. This uses the “xtpcse” routine in STATA8.2 to estimate the regression coefficients 

of equation (4) and adjust the standard errors of these coefficients for heteroscedasticity across 

states and a single AR(1) process on the time dimension (Stata Corp, p. 150-159).                     

Although we know that OLS will be inefficient, good reasons exist for taking this 

approach. First, all of the explanatory variables may not be strictly exogenous in equation (4). If 

they are not, FGLS is not consistent. However, the OLS estimator is consistent provided 



 15

E(uilt│Xilt) = 0, which permits feedback, where E(·) is the expectation operator and Xilt is the set of 

regressors in equation (4),.  Second, in most applications of FGLS, the model’s disturbances are 

assumed to follow a first-order autoregressive process [AR(1)] and the variables of the model 

undergo quasi-first differences before estimation of coefficients. Since rho (ρ), the first-order 

autocorrelation coefficient and the variance of the disturbances are unknown, they must be 

estimated, and this changes greatly the properties of the estimator. The best-case scenario with 

FGLS is a consistent estimator, which requires that the sample size over time go to infinity.13 In 

panel-data over time, however, we will be in the small sample situation in the time dimension. In 

this case, FGLS has unknown statistical properties and can hardly be claimed to be better than 

OLS.  Third, given the specification of equation (4), the mean and the variance of the disturbance 

in equation (4), uilt, can be assumed reasonably to be finite constants over time, and if the 

disturbances are weakly dependent over time, the disturbances are covariance stationary. With a 

few added assumptions, we can draw upon the Gordin’s Central Limit Theorem for asymptotic 

normality of the OLS estimator (Greene, p. 263-265, 463; White, p. 122-133). 

The Results 

Equation (4) is fitted in STATA8.2 with a panel structure for the 48 states and 30 observations 

over time with and without a time trend and coefficient estimates and standard errors are reported 

in table 4.14 The residuals from regressions (1) and (2) in table 4 produce a single summary 

estimate of ρ, the first-order autocorrelation coefficient, of 0.76 and  0.69, respectively. These 

values are quite far away from 1 and suggest that weak dependency exists in the disturbances and 

that a unit root is unlikely to be a problem (Greene, p. 636). Moreover, we are in the small length 

of the time series and large number of cross-sectional observations, and hence, a large cross-

section and relatively short time series let us be agnostic about the amount of temporal persistence 

in the data (Wooldridge 2002, p.175).  
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In regressions (1) and (2), table 4, all of the estimated coefficients have plausible signs. In 

regression (2), which includes trend, all of the adjusted t-values are smaller than for regression (1), 

which excludes trend, except for the direct effect of public agricultural research capital. This 

variable has a larger adjusted t-value in regression (2) than regression (1). All of the direct effects 

of key variables are significantly different from zero at the 5 percent level in a two-sided test, 

except for the estimated coefficient of private agricultural research capital. All of the coefficients 

of interaction terms are statistically significant (positive or negative) at the 5 percent level in a 

one-sided test. In regression (2), the estimated coefficient of trend is 0.011, and it is significantly 

different from zero at the 5 percent level. It is a measure of the net effect of time trend in the 

dependent variable, all regressors, and even in other variables from outside the model that are 

correlated with ln TFP and (or) trend, including any technical change in research equipment or 

software. At face value, the coefficient of trend suggests that TFP is growing annually at 1.1 

percent per year, holding other regressors in the econometric TFP model constant. The R2 is 0.33 

in regression (1) and 0.42 in regression (2), which indicates that we are capable of explaining one-

third to almost one-half of the variation in ln TFP by the regression equations.  

The point estimate of marginal effects represented by equations (5)-(9) and associated 95- 

percent confidence intervals are reported in table 5.15  Although the signs of these marginal effects 

are unaffected by the inclusion of trend, the marginal effects are smaller in absolute value when 

trend is included. The elasticity of TFP with respect to public agricultural research capital (RPUB) 

is 0.197 without trend and 0.139 with trend. The elasticity of TFP with respect to public 

agricultural research spillin capital (RPUBSPIL) is 0.146 without trend and 0.036 with trend. The 

elasticity of TFP with respect to extension capital (EXT) is 0.156 without trend and 0.110 with 

trend. These marginal effects, however, have tight 95-percent confidence intervals (table 5). 
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The central focus of this paper is the impact of the composition of SAES funding on the 

productivity of public agricultural research. These marginal effects are a little smaller after the 

inclusion of trend, and we focus on the second set. An increase in programmatic funding by one 

percentage point decreases TFP by 0.9 percent. The 95-percent confidence interval for this impact 

is relatively tight and, conditional on the data, the marginal impact is most likely negative, but 

there exists some chance that it is positive (table 4).16 In contrast, a marginal increase of SAES 

federal grants and contract funding by one percentage point reduces TFP by 4.3 percent. 

Conditional on the sample, this latter impact is almost certainly negative. Recall that at the sample 

mean, the share of federal formula funds in total SAES funds is 23.0 percent (and of state 

government funding is 0.52) and the share in federal grants, contracts and cooperative agreements 

is 9.6 percent (table 3).  Hence, if federal formula funds are reduced by ten percentage points, and 

these funds are transferred to competitive grants (with an overhead rate of 20%), this will increase 

SAES funding from federal grants, contracts and cooperative agreements by only about two 

percent. Hence, agricultural TFP will decline by 7.6 percent. This is a significant reduction. 

To gain insight, we graph ∂ln(TFP)/∂(SFF) against SFF. Given that β3  is positive and β4 is 

negative, as SFF increases, ∂ln(TFP)/∂(SFF) first increases, peaks at SFF = 0.62 under either 

regression, and then decreases for larger values of SFF (Figure 2). The marginal relationship 

between ∂ln(TFP)/∂(GR) and GR is convex rather than concave. At small (or large) values of GR, 

∂ln(TFP)/∂(GR) is large. Starting from a small value of GR, ∂ln(TFP)/∂(GR) decreases to GR  = 

0.43 under regression (1) and (2), and then increases for larger values of GR (see figure 3).  Hence, 

an incremental re-allocation of funds from SFF to GR, i.e., a decline in the share of programmatic 

funding offset by an equal increase in federal grants and contracts, will lower state agricultural 

TFP significantly.  

Discussion 
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The current blend of federal formula and state appropriations and federal competitive grants, 

contracts and cooperative agreements provides SAES directors with considerable flexibility in 

using the resources and providing direction for public agricultural research that meets local and 

regional needs. Directors have the advantage of building reputations with state clientele and their 

scientists, which tends to increase the efficiency of the public agricultural research organization 

(Huffman and Just 1999, 2000). Generally, state legislators expect their Land Grant University to 

use state government appropriated public research funds to solve local problems or to develop new 

technologies that will give local farmers a comparative advantage. Failure of State Agricultural 

Experiment Station directors to deliver on these discoveries will most likely result in a future 

weakening of state legislative support for public agricultural research, which has occurred in some 

states, e.g., Wisconsin and Colorado. 

 In Febuary 2005, the President of the United States recommended a major change in public 

agricultural science policy; the elimination of federal formula funds for experiment station 

research. In its place, he proposed a new competitive grants program for the state agricultural 

experiment stations (CSREES 2005a). This proposed policy is a complete contradiction of the 

Congressional sentiment underlying the original Hatch Act of 1887 and most acts up to the 

Amended Hatch Act of 1955 (Kerr).17  Also, our econometric results imply that this new 

agricultural science policy would reduce agricultural total factor productivity, which is one of the 

major benefits of public agricultural research.18 Recall that, when public agricultural research is 

funded by federal competitive grants and contracts, part of the granted resources goes to university 

overhead, and the research agenda that is to be undertaken is set by the funding agency, i.e., 

CSREES.  Furthermore, the funding decisions use information presented in research proposals 

rather than completed projects. In addition, the federal competitive-grant programs do not pay for 

research proposal writing, so the risk of federal research grant programs is borne by the competing 
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scientists or their employing institutions, and the somewhat distorted incentive structure increases 

transactional costs, while lowering the scientists' productivity. Moreover, federal funding agencies 

tend to fund less than 100 percent of the resources needed to complete a research project. Other 

resources, most notably state government-appropriated funding, needed to complete these projects. 

Hence, this policy change would greatly increase the funding uncertainty faced by SAES scientists 

and Agricultural Experiment Station directors.  These are reasons why, from a social perspective, 

federally funded competitive grants do not look nearly as attractive economically as they do to the 

federal funding agencies, that generally take a “private benefits” perspective. 

 Social scientists have periodically noted that public agricultural research, cooperative 

extension, farmers' education, private agricultural research, infrastructure and government all 

contribute to agricultural productivity change. Over the past two decades, a number of studies 

have examined the effect of public investments in agricultural research and development, and all 

have demonstrated a positive and significant impact on agricultural productivity (Evenson 2001). 

Conclusions  

This study has presented new econometric evidence of the significant impact of public agricultural 

research and extension on state agricultural TFP over 1970 through 1999.  The results also showed 

that complex interaction effects exist between a state’s public agricultural research capital and 

SAES funding composition—shares of federal formula and state appropriations (programmatic 

funding) and of federal grants and contracts.  These results imply that transfers of federal formula 

funds or replacing federal formula funds with a competitive grant programs for State Agricultural 

Experiment Stations would reduce state agricultural productivity significantly. These conclusions 

are unaffected by the inclusion of trend in the econometric TFP model.   

 In addition, states, which have large experiment stations and have accumulated past 

experience competing for federal grants, have an advantage over other states. Small states would  
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most likely lose state matching funds if their Hatch funds were eliminated. Many of these states 

would be forced to close their state agricultural experiment station, or to form alliances with other 

stations. The first option seems likely to be quite detrimental to long-run federal funding of SAES 

research because it would undermine Congressional support. The latter re-organization could 

result in some economies of scale in the organization of agricultural research and be beneficial to 

the long-run strength of the SAES system. In any case, major distribution effects would be implied 

by the eliminating Hatch funding of SAES research. Hence, State Agricultural Experiment Station 

directors as a group and the U.S. Congress seem unlikely to support Bush’s proposal to convert 

existing Hatch Act funding into a competitive grant program.  

Returning to the broader issue of the social annualized marginal rate of return to public 

funds invested in agricultural research, our estimate ranges from 49- to 62-percent. The smaller of 

these numbers is associated with the TFP model that includes a time trend.19 Both of these 

marginal real internal rates of return compare quite favorably with estimates reported by Evenson 

(2001). The implied first-year marginal product of public extension exceeds its cost. This marginal 

product is about $29 per dollar of extension staff time, which clearly exceeds its costs.20 

Until 1980, 70 percent of State Agricultural Experiment Station funding came from federal 

formula funds and state government appropriations, both of which are relatively unrestricted. 

Today that percentage has fallen to about 50 percent. Due to the nature of agricultural research, a 

long lag exists from the initial investment in a project to the time when useful discoveries lead to 

innovations for farmers. It is easy to overlook the important role of timing in public agricultural 

research. If, for some reason, current public agricultural research investments would drop to zero, 

research benefits would continue for some time, but at a reduced rate. It would be very difficult for 

future research ever to catch-up on past foregone discoveries. Hence, it is critical to maintain, or 
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even increase, funding for public research, given the large dividends paid on addressing local 

agricultural problems and associated issues. In research, lost time is difficult to recover. 
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Table 1. Relative Distribution of U.S. State Agricultural Experiment Station Revenue by 
Major Source, 1980-2003 
                 
Sources Distribution(%) 
 1980 1990 2000 2003
Regular federal appropriations 17.0 14.0 13.1 15.3
      Hatch and other formula funds [15.1] [10.2] [8.4] [7.0]
      CSRS/CSREES special grants [1.2] [2.5] [2.1] [2.8]
      NRI Competitive grants -- [1.2] [2.0] [2.3]
      Other CSRS/CSREES administered 
          funds [0.7] [0.1] [0.6] [3.2]
Other federal government research funds 11.4 12.1 16.2 20.9
      Contracts, grants, and cooperative 
          agreements with USDA agencies [3.0] [3.1] [3.4] [4.2]
           
      Contracts and grants with non-USDA federal  
          agencies [8.4] [9.0] [12.8] [16.7]
           
State government appropriations 55.5 55.0 50.1 43.7
Industry, commodity groups, foundations 9.2 13.2 15.3 15.1
Other funds (product sales) 6.9 5.7 5.3 5.0
Grand total:% 100.0 100.0 100.0 100.0
Grand total amount:  
                  Current dollar., millions     804.8 1,596.5 2,229.7 2,571.0
                   Constant dollar., millions 2000  1,893.6 2,178.0 2,229.7 2.291.4

__________________________________________________________________________________________________________ 
Source: CSREES 
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Table 2.  Average Annual Growth Rate for Farm Output, Input, Multifactor Productivity and 
Public Agricultural Research Capital and Composition of SAES Funding, 1970-1999 
   Average annual growth rate, 1970-1999 (%)  
           Public ag 
  TFP Relative Total  Total    research Ave. SAES share from federal 
Region/State  level 1996  output  input  TFP   capital  formula comp. grants 

New England 
Maine                       1.026a 0.08 -1.50 1.42                 1.43 0.33b          0.07c 

New Hampshire 0.865 0.13 -1.17 1.30 0.77 0.55 0.01 
Vermont 1.131 0.74 -0.15 0.89 1.49 0.47 0.03 
Massachusetts 0.991 0.29 -1.43 1.72 0.02 0.36 0.05 
Connecticut 1.168 1.45 -0.90 2.35 0.18 0.20 0.13 
Rhode Island 0.959 -0.18 -1.69 1.50 1.18 0.38 0.18 
 
Northeast 
New York 1.070 0.50 -0.91 1.41 2.12 0.11 0.17 
New Jersey 0.948 0.83 -0.60 1.43 0.96 0.16 0.08 
Pennsylvania 1.032 1.69 0.17 1.52 2.24 0.29 0.08 
Delaware 1.198 2.82 1.75 1.08 1.57 0.35 0.06 
Maryland 1.072 1.51 0.19 1.33 2.38 0.24 0.06 
 
Lake States 
Michigan 0.852 1.94 -0.68 2.26 3.38 0.17 0.17 
Minnesota 1.053 1.94 0.00 1.94 2.49 0.18 0.11 
Wisconsin 0.977 1.09 0.68 1.77 2.25 0.15 0.25 
 
Corn Belt 
Ohio 0.846 1.33 -0.57 1.90 0.79 0.23 0.02 
Indiana 1.025 1.59 -0.33 1.92 1.64 0.16 0.20 
Illinois 1.057 1.29 -0.58 1.87 1.56 0.20 0.11 
Iowa  1.192 1.08 -0.75 1.83 3.19 0.18 0.14 
Missouri 1.002 0.78 -0.59 1.37 3.39 0.22 0.10  
 
Northern Plains 
North Dakota 1.181 2.15 -0.09 2.24 4.06 0.18 0.05 
South Dakota 1.187 1.96 -0.11 2.07 2.60 0.24 0.04 
Nebraska 1.257 2.49 0.69 1.80 4.42 0.11 0.09 
Kansas 1.169 2.24 0.60 1.65 3.35 0.13 0.10 
 
Appalachia 
Virginia 0.962 1.42 -0.27 1.69 3.25 0.21 0.14 
West Virginia 0.607 1.19 -0.36 1.55 2.15 0.48 0.05 
Kentucky 0.984 1.56 -0.03 1.60 2.23 0.35 0.00 
North Carolina 1.181 2.15 -0.09 2.23 4.50 0.18 0.14 
Tennessee 0.825 1.30 -0.45 1.75 2.95 0.28 0.14 
 
Southeast 
South Carolina 1.057 1.07 -0.81 1.88 2.13 0.32 0.00 
Georgia 1.465 2.25 0.20 2.04 5.53 0.19 0.04 
Florida 1.525 2.27 0.27 2.00 3.47 0.06 0.06 
Alabama 1.000 1.85 -0.05 1.90 1.63 0.23 0.06 
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Delta States 
Mississippi 1.222 1.51 -0.39 1.90 2.69 0.26 0.07 
Arkansas 1.375 2.66 0.60 2.06 3.30 0.21 0.03 
Louisiana 1.188 1.12 -0.23 1.35 1.69 0.13 0.04 
 
Southern Plains 
Oklahoma 0.845 1.65 0.37 1.28 1.67 0.22 0.11 
Texas 0.929 1.99 0.42 1.57 2.88 0.16 0.09 
 
Mountain States 
Montana 0.851 1.17 -0.03 1.20 2.49 0.18 0.09 
Idaho 1.278 2.43 0.51 1.92 3.38 0.22 0.05 
Wyoming 0.826 1.17 0.28 0.89 0.92 0.30 0.07 
Colorado 1.076 1.57 0.06 1.51 3.77 0.23 0.18 
New Mexico 0.964 1.98 0.43 1.55 2.49 0.28 0.10 
Arizona 1.251 1.41 -0.16 1.57 4.63 0.12 0.12 
Utah 0.890 1.87 0.45 1.42 2.60 0.23 0.17 
Nevada 0.985 1.48 0.39 1.09 4.17 0.27 0.11 
 
Pacific 
Washington 1.358 3.04 0.72 2.32 2.35 0.17 0.10 
Oregon 0.837 2.67 0.29 2.38 2.59 0.12 0.22 
California 1.445 2.64 1.18 1.46 3.02 0.05 0.17 
 
a The TFP level is relative to Alabama. 
 
b Share of SAES funds from Hatch and other federal formula programs. 
 
c Share of SAES funds from federal competitive grants, contracts and cooperative agreements lagged   
 12 years (see table 3). 
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Table 3.  Variable Names and Definitions and Summary Statistics 
 
Name Symbol       Mean (Sd.) Description 
 
Total factor productivity          TFP            -0.205* Total factor productivity for the agricultural sector (Ball et al., 2002) 
                                                                     (0.254) 
Public agricultural                    RPUB         16.129* The public agricultural research capital for an originating state. The summation of past  
research capital                    (0.879) investments in agricultural research within a state having an agricultural productivity  
                                                                                                focus (Huffman,  McCunn, and Xu) in 1984 dollars (Huffman and Evenson 1993).   
                                                                                                Capital stock obtained by summing past research expenditures with a 2 through 35-
  year lag and trapezoidal shaped timing weights 
 
Budget share from federal         SFF1t – 12        0.230  The share of the SAES budget from Hatch, Regional Research, McIntire-Stennis,  
formula funds                       (0.112) Evans-Allen, and Animal Health (USDA), i.e., formula funds, lagged 12 years 
 
Budget share from state SFF2t – 12        0.521  The share of the SAES budget from state government appropriations 
government appropriations                       (0.123) (USDA), lagged 12 years 
 
Budget share from federal         SFFt - 12          0.751             The share of the SAES budget from programmatic funding, SFF1t - 12 + SFF2t – 12 
formula and state appropriations                     (0.132) 
 
Budget share from federal         GRt - 12            0.096         The share of the SAES budget from the National Research Initiative, 
grants and contracts                       (0.076) other CSRS funds, USDA contracts, grants and cooperative agreements, 
   and non-USDA federal grants and contracts (USDA), lagged 12 years 
 
Budget share from other ORt – 12                0.165  The share of the SAES budget from private industry, commodity groups, 
funds                                             (0.132) NGO’s, and SAES sales (USDA), lagged 12 years 
 
Public agricultural                 RPUBSPILL     17.763* The public agricultural research spillin stock for a state, constructed from  
research capital spillin                                   (0.567)             state agricultural subregion data (see Huffman and Evenson 1993, p. 195)  
 
Public extension capital             EXT             1.292*       A state’s stock of public extension, created by summing for a given state the public 
                     (0.976) full-time equivalent staff years in agriculture and natural resource extension, apply a 
  weight of 0.50 to the current year and then 0.025, 0.125, 0.0625, and 0.031 for the 
  following four years. The units are staff-years per 1,000 farms. 
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Private agricultural                   RPRI           6.076* A state’s stock of private patents of agricultural technology. Each state’s private 
capital                     (0.248) agricultural research capital in the national total of agricultural patents awarded to 

  U.S. and foreign inventors for each year (Johnson and Brown) obtained by weighting 
  the number of private patents in crops (excluding fruits and vegetables and  
  horticultural and greenhouse products) and crop services, fruits and vegetables,  
  horticultural and greenhouse products, and livestock and livestock services by a state’s 
  sales share in  crops (excludes fruits, vegetables, horticultural and greenhouse  
  products), fruits and vegetables, horticultural and greenhouse products and livestock 
  and livestock products, respectively.  The annual patent totals are 2- thru 18-year lag 
  using trapezoidal timing weights 

 
Regional indicators Northeast Dummy variable taking a 1 if state is CT, DE, ME, MD, MA, NH, NJ, 
  NY, PA, RI, or VT 
 Southeast Dummy variable taking a 1 if state is AL, FL, GA, KY, NC, SC, TN, VA, or WV 
   
 Central Dummy variable taking a 1 if state is IN, IL, IA, MI, MO, MN, OH, or WI 
   
 North Plains Dummy variable taking a 1 if state is KS, NE, ND, or SD 
 
 South Plains Dummy variable taking a 1 if state is AR, LA, MS, OK, or TX 
 
 Mountains Dummy variable to buy a 1 if state is AZ, CO, ID, MT, NV, NM, UT, or WY 
   
 Pacific Dummy variable taking a 1 if state is CA, OR, or WA 
 
_Trend___________________Trend                                     Annual time trend                                                                       _________ 
 
*Numbers reported in natural logarithms.
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Table 4.  Least-squares Panel Estimate of the Econometric Agricultural Total-factor Productivity 
Model: 48 U.S. States, 1970-1999a   [N x T = 48 x 30 = 1,440] 
__________________________________________________________________________________   
                                                                        ___Regression (1)___                ___Regression (2)___ 
Regressors  Coefficient       t-valueb              Coefficient      t-valuec 

_____________________________________________________________________________________ 
Intercept                                                             -6.865             5.91                     -24.803           5.62 
 
ln (Public Ag Res Capital)t   0.189             9.44                        0.131         14.13 
 
ln (Public Ag Res Capital)t*SFFt-12    0.037             1.54                        0.035           1.67 
 
ln (Public Ag Res Capital)t*(SFFt-12)2               -0.030             1.83                      -0.028           1.92 
 
ln (Public Ag Res Capital)t*GRt-12                     -0.032             2.74                      -0.034           3.01 
 
ln (Public Ag Res Capital)t*(GRt-12)2                  0.037             1.47                        0.040           1.70 
 
ln (Public Extension Capital)t    0.156             5.46                        0.110           5.12 
 
ln (Public Ag Res Capital Spillin)t                      0.147             4.12                        0.035           2.09 
 
ln (Private Ag Res Capital)t    0.089             1.20                        0.001           0.02 
 
Regional Indicators 
   Northeast (=1)                                                  0.185             2.61                        0.053           1.10 
 
   Southeast (=1)                                                  0.037             0.79                        0.005           0.13 
 
   Northern Plains (=1)                                        0.343             5.73                        0.194           5.48 
 
   Southern Plains (=1)  0.103              1.88                        0.062           1.51 
 
   Mountains (=1)  0.219              3.02                        0.115           2.29 
 
   Pacific (=1)  0.117              1.91                        0.057           1.25 
 
Trend                                                                                                                        0.011           4.75 
R2 0.328                    0.421 
a The dependent variable is ln (TFP)ilt.  
 
b,c The t-values are obtained by taking a regression coefficient and dividing it by its standard error. The 
standard errors include adjustments for heteroscedasticity across states and a single first-order 
autoregressive structure on the disturbances ordered over time. The estimate of ρ, the first-order 
autocorrelation coefficient, for regression (1) is 0.76 and for regression (2) is 0.69. The estimated 
coefficients and adjusted t-values are computed in STATA8.2 using the panel data routine “xtpcse.”  
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Table 5. Marginal Impacts on Agricultural TFP from a Policy Change  
(95-Percent Confidence Interval for each Impact is in Parentheses) 
_________________________________________________________________ 
Equation/Marginal Impact                          _    From Regressiona__ 
____________________________________(1)                       (2)____________ 
 
(5) ∂ln(TFP)/∂ln(RPUB)                                0.197                   0.139 
                                                               (0.161, 0.234)      (0.124, 0.153) 
 
(6) ∂ln(TFP)/∂ln(RPUBSPILL)                     0.147                   0.036 
                                                              (0.077, 0.217)      (0.002, 0.067) 
 
(7) ∂ln(TFP)/∂ln(EXT)                                                   0.156                   0.110 
                                                               (0.100, 0.212)      (0.068, 0.153) 
 
(8) ∂ln(TFP)/∂(SFF)                                     -0.130                  -0.099 
                                                              (-0.253, 0.001)    (-0.214, 0.016) 
 
(9) ∂ln(TFP)/∂(GR)                                       -0.402                  -0.431 
                                                              (-0.657, -0.146)   (-0.684, -0.179) 
________________________________________________________________ 
a Estimated coefficients are taken from Table 4 and marginal effects are evaluated 
 at the sample mean of the data for (5), (8) and (9). 
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Figure 1.  Public Agricultural Research Timing Weights. 
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  Figure 2.  Marginal effect of SFF on ln TFP 
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Table A1.  Ordinary Least-squares Estimate of Econometric Model of State Agricultural Total 
Factor Productivity, 48 States: 1970-1999a   [N x T = 48 x 30 = 1,440] 
_______________________________________________________________________________________ 
                                                                        ___Regression (1)___            ___Regression (2)____ 
Regressorsb  Coefficient       t-valuec           Coefficient        t-valued 

_______________________________________________________________________________________ 
 
Intercept                                                           -6.438              21.59                -25.753            20.84 
 
ln (Public Ag Res Capital)t 0.162              13.94                   0.118             10.60 
 
ln (Public Ag Res Capital)t*SFFt-12  0.111                4.09                   0.082               3.27 
 
ln (Public Ag Res Capital)t*(SFFt-12)2             -0.080                4.44                  -0.059              3.51 
 
ln (Public Ag Res Capital)t*GRt-12                   -0.079                6.16                  -0.063              5.30 
 
ln (Public Ag Res Capital)t*(GRt-12)2                0.153                4.45                   0.107              3.36 
 
ln (Public Extension Capital)t  0.188               14.78                  0.129            10.52 
 
ln (Public Ag Res Capital Spillin)t                    0.120                9.94                   0.026              2.11 
 
ln (Private Ag Res Capital)t  0.108                4.16                    0.031              1.29 
 
Regional Indicators 
 
   Northeast (=1)                                               0.111                3.87                    0.025              0.94 
 
   Southeast (=1)                                              -0.005               0.26                     0.015              0.81 
 
   Northern Plains (=1)                                     0.287                9.97                     0.170             6.18 
 
   Southern Plains (=1)                                     0.048                2.10                     0.032             1.50 
 
   Mountains (=1)                                              0.151                6.50                     0.083             3.80 
 
   Pacific (=1)                                                    0.093                3.46                    0.058              2.32 
 
Trend                                                                                                                     0.011           16.03 
 
R2                                                                      0.512                                      0.586 
a The dependent variable is ln (TFP)t. 
 
b  The Central Region is the excluded region. 
  
c,d  The t-values are computed without regard to possible heteroscedasticity or autocorrelation.
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Endnotes 

 
1     The “formula” is as follows: 20% of each year’s appropriation is distributed equally among states, 
     26% is distributed to states based on their share of the U.S. farm population, and 26% is distributed  
     based on a state’s share of the U.S. rural population (Huffman and Evenson 2005; CSREES 2005b).  
     Twenty-five percent of the total is allocated to regional or multi-state research, and 3% are allocated 
     for federal administration. Sometime formula funding is used to describe only the parts based on the 
     shares of the farm and of the rural population, but this seems a bit conservative here. States must also 
     match Hatch and other formula funds from state and other sources. 
 
2    The scope of the agricultural research under the Hatch Act includes research on all aspects of   
    agriculture, including soil and water conservation and use; plant and animal production, protection,  
    and health; processing, distribution, safety, marketing, and utilization of food and agricultural  
    products; forestry, including range management and range products; multiple use of forest 
    rangelands, and urban forestry; aquaculture; home economics and family life; human nutrition; rural  
    and community development; sustainable agriculture; molecular biology; and biotechnology.  
    Research may be conducted on problems of local, state, regional, or national concerns (CSREES 
    2005b). 
 
3   See Ball et al. for a discussion of the relationship between state levels of total factor productivity  
    and the national level.  
 
4   Note that empirically, TFP has a weak lower bound roughly at zero, i.e., when there is a total  
    “crop failure.” However, it has no such tendency for any particular upper limit. Hence, by  
    making the dependent variable of equation (4) the natural logarithm of  TFP, we have created a 
    transformed dependent variable and a disturbance term u  that are approximately normal. In contrast  
    to a production function, there are very weak priors about the exact functional form of the 
    productivity equation. We follow Evenson (p. 583) and choose a double-logarithmic model 
    modified so that we can test hypotheses about the effects of the composition of agricultural experiment 
    station funding on agricultural productivity. We also tested for significant interaction effects between  
    public and private agricultural research capital, but no significant impact was identified. 
 
5   In experiments, an interaction term between public agricultural research and extension was included.  
   The estimated coefficient of this term was negative, but it was not strong statistically.  We excluded  
   this variable from the our final specification of the productivity model. 
 
6   Significant public and private agricultural research-capital interaction effects did not exist. 
 
7  The instrument should also be uncorrelated with the disturbance term in equation (4). 
 
8   Free-form lag estimates are generally not very satisfactory because with correlation  
    between lagged real research expenditures, the estimated coefficients tend to oscillate between positive 
    and negative values and only make sense when smoothed (Evenson, p. 588). 
 
9  Although we could use a somewhat altered shape of the lag pattern to construct the research capital  
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   variable, other trapezoidal shapes with a total lag of 35 years will yield a new research capital 
   variable that is highly correlated with the one we chose, and hence, meet the instrumental variable 
   criterion.  
 
10  A number of studies have used “trend” to proxy technical change or research capital, e.g., Capalbo 
    and Denny; Chavez and Cox; and Lim and Shumway. Our public agricultural research variable is a 
    is a better proxy or instrument technical change.  Because it is constructed from real public agricultural  
    research expenditures it is not strongly trended over the study period. 
 
11  The set of weights is available from the authors upon request. 
 
12     A first-order autoregressive process on the disturbance ut is represented as ut = ρ ut-1 + εt where ρ is 
      the first-order autocorrelation coefficient and εt is a zero mean and fixed finite variables disturbance 
      term. 
 
13    If actual-first differences exist, i.e., ρ = 1, rather than quasi-first differences are appropriate, this 
      problem does not arise. 
 
14   See Appendix A for OLS estimates of the coefficients of the model and t-values outside the panel  
     structure and without adjustments for heteroscedasticity or autocorrelation. 
 
15  When the marginal effect is not a constant, the evaluated is at the sample mean. 
 
16   This is a Bayesian, and not a classical statistical, interpretation, Greene (p. 429-430). 
 
17    Up do the Bankhead-Jones Act of 1935, all state agricultural experiment stations shared equally in 
      federally appropriated SAES research funding (Kerr, p. 73-74), but in this Act for the first time funds  
      were distributed among states on the basis of each state’s share of the rural population of the United 
      States. The first major attempt by the Executive Branch to take control of Hatch Act funding occurred  
      in 1953 under the Eisenhower administration. For a few years the Office of Experiment Stations was 
      under a newly organized Agricultural Research Service (ARS), and ARS supervised all federal 
      agricultural research and allocated funds to the states for agricultural research (Kerr, p. 95-96). This 
      ended in 1961 under the Kennedy Administration when the Cooperative State Research Service was 
      formed to take charge of the state agricultural experiment stations and be parallel to ARS in the 
      USDA organizational structure (Kerr, p. 103-104). 
 
18  Other outputs , e.g., the number of basic scientific discoveries from public agricultural research, might  
      increase. However, we do not have a direct way of obtaining an estimate of this effect. Our results do  
     suggest that these other impacts of public agricultural research would need not only to be positive, but  
     relatively large, to offset the negative TFP effects. 
 
19  The marginal annualized internal rate of return is computed assuming a one-unit increment in public 
     funding, and benefits are measured at the sample mean and distributed over time using timing weights 
     (figure 1).  The sample mean value of Q is $3.513 billion per state per year in constant 1984 dollars.  
 
20   We used a sample mean number of farms per state of  49,900 and assumed that a staff-year of 
     Extension effort cost $33,000 in 1984 prices, which may be large. 


